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Planar magnetron cathodes have arching magnetic field lines which
concentrate plasma density to enhance ion bombardment and sputtering.
Typical parameters are: helium at 1 to 300 milli-torr, 200 to 2000 gauss
at the cathode, 200 to 800 volts, and plasma density decreasing by up to
ten times within 2 to 10 cm from the cathode. A 2D, quasineutral, fluid
model yields formulas for the plasma density: n(x,y), current densities:
jjjj(x,y), jjjjeeee(x,y), jjjj++++(x,y), the electric field: Ey(y), and the voltage between the
cathode surface and a distant plasma. An ion sheath develops between
the cathode and the quasineutral flow. The thickness of this sheath
depends on processes in the quasineutral flow. Experiments shows that Te
(3 -> 8 eV) adjusts to ensure that a0t » 2.5 in helium, for ionization rate a0
(104 -> 105 s-1), and electron transit time to the unmagnetized plasma t

(10 -> 100 ms). Helium glow discharge cathode fall a0t is about 2.5, though
this occurs at much higher voltage.

This work was performed under the auspices of the U.S. DOE by LLNL under contract
no. W-7405-Eng-48.
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IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn

This report outlines an analytical model of the distribution of plasma
in the cathode fall of a planar magnetron cathode. Here I continue
commentary on previous work, and introduce an ion sheath model to
describe the discharge Òdark spaceÓ below the magnetron halo. Figure 1 is
a schematic of these magnetized cathode falls. A constant density ion
sheath extends from the cathode surface to a distance y* of the order of

millimeters. The bulk of the cathode fall is the quasi-neutral region with
falling density extending to a distance y0 of the order of centimeters.
Beyond y0 the plasma electrons are no longer magnetized, and the plasma
is uniform.

QQQQuuuuaaaassssiiii----nnnneeeeuuuuttttrrrraaaallll    fffflllloooowwww

The original problem prompting my work was to find the spatial
distribution of plasma, and the voltage drop, as a function of arbitrary
magnetic field BBBB(x,y) = BBBBxxxx(x,y) + BBBByyyy(x,y), where x is parallel to the cathode
and y is perpendicular. Planar magnetron cathodes were being used to
lower the impedance of a discharge device designed for an application
other than as a sputtering source. The purpose of the model was to
facilitate this engineering. Reference 1 describes the quasi-neutral fluid
model of the magnetized cathode fall. Below is a summary of those results.

SSSSuuuummmmmmmmaaaarrrryyyy    ooooffff    AAAAnnnnaaaallllyyyyttttiiiiccccaaaallll    RRRReeeessssuuuullllttttssss

Equations from reference 1 are shown in the logical sequence for any
specific calculation. The equations are numbered exactly as in reference 1
(please see that report for a complete description).
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Besides the magnetic field, the model requires Te, j¥ or n¥, and both

a0 and neN (which depend on Te and the gas). The proper Te to select for
any gas mixture is that which gives the same a0t as a glow discharge
conveying the same amount of current. Please see reference 2 for a
complete discussion on how a0t, the product of the ionization rate and
electron transit time from the cathode to y0, allows for a direct comparison
of cathode falls from planar magnetron cathodes and glow discharges.
Magnetized cathodes operate at lower voltage than glow discharges of
equal current because electrons are confined near the cathode for a longer
time thus producing the required ionization at lower average energy.

After reference 1 was issued I realized that equation (52) can be
stated more simply as:

F(y) = 1 - exp(-
a0

vey(0,h)
 dh

0

y

)
(52a)

In practice the lateral limits ±xp should be taken beyond the poles of the
flanking magnets (more generally, beyond the points where Bx(x,0) = 0
given that x = 0 is the center of the magnetron track and halo). These
limits appear in equations (59), (58), (64), (65), (68). Both references 1 and
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2 show examples of spatial distributions of density and current calculated
from these equations.

SSSSeeeelllleeeeccccttttiiiinnnngggg    aaaannnn    IIIIoooonnnn    SSSShhhheeeeaaaatttthhhh

Electrons near the cathode surface are immobilized by Bx(x,y), and an
ion sheath forms. Define a Debye length based on ion kinetic energy, Vi in
eV:

hDi = e0Vi
e  n

(1)

The sheath forms to a distance y from the cathode, where the local density
n(y) and voltage V(y) (which sets Vi) make hDi = y. The ion kinetic energy
is estimated most simply as Vi = V0 - V(y), for V0 = the total voltage drop
between the cathode and the end of the magnetized ÒfallÓ at y0 [same as y¥

in reference 1, defined by equation (53)]. V(y) rises from zero at the
cathode to V0 at y = y0. \

hDi = e0(V0 - V(y))
e  n(y)

 = y (2)

It is assumed here that only the most dense plasma, between the magnet
poles (x=0), need be considered. Equation (2) is an energy condition for
sheath formation: ions must have sufficient kinetic energy to create a
charge separation of density n over a distance y with electrons
immobilized by Bx.

A unique value of y is determined with the addition of a current
conservation condition: (ion current from the sheath) = (ion + electron
currents from the quasi-neutral flow):

Ih  =  I+  +  Ie

D òZ e nh(x,0) vh dx
<pole(-)

>pole(+)

 = D òZ e n(x,y*) [v+ + ve] dx
<pole(-)

>pole(+)



6

Assuming that most of the current is conveyed at x = 0 (between poles),
then the integration over x can be dropped (DZ = length of magnetron
track), leaving:

e nh(0) vh  =  e n(y*) (v+ + ve)

The ion density in the sheath is constant as no ionization occurs because
the electrons are immobilized, \ nh = n(y*) = the plasma density at the

interface between the sheath and the quasi-neutral flow. All the current at
the cathode surface is carried by ions at Vi = V0, [recall that V(y=0) = 0],
the ions being accelerated through the sheath. Thus the current continuity
expression above is simplified to:

vh  =  2 e V0
m+

  =  2 e
m+

(V0 - V(y*))   +  ve(y*) (3)

Here ve(y) is the fluid velocity component in the +y direction.

Now solve for y* by eliminating V0 - V(y) from both (2) and (3). The

first and then last steps of this algebra are as follows:

2 e V0
m+

  =  2 e
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(y*
2 e n(y*)

e0
)   +  ve(y*)

y *  =  e0 m+

2 e2 n(y*)
 ( 2 e V0

m+
    -   ve(y*)) (4)

The sheath starts where quasi-neutral n(y) and ve(y) are related to
coordinate y as in equation (4). In this work a simple splice is effected:
below y* is ion sheath, above y* is quasi-neutral flow. This formula

produces a sheath height comparable to the Òdark spacesÓ seen in the
experiment. Note that for negligible ve(y*), the expression for y* reduces to

a Debye length formula:

y *  =  e0  V0

 e n(y*)
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reflecting formula (1) with specific choices for ion kinetic energy and
sheath density. These choices are determined by the balance of ionization
and transport in the magnetized, quasi-neutral flow.

Reference 3 discusses ion sheaths with magnetized electrons,
however the regime of interest in that report was very different than that
of sputter discharges. The essential point here is that ions can use their
kinetic energy to create a charge separation when electrons are fixed by
transverse field lines. The relationship between the ion energy, the charge
density and the extent of the separation is the Debye length formula.

MMMMaaaaggggnnnneeeetttt    oooorrrriiiieeeennnnttttaaaattttiiiioooonnnn

Figures 2, 3, and 4 show the types of magnet orientations discussed
in reference 2. A magnet whose polar axis is perpendicular to the cathode
surface nearest the plasma halo is said to be at 0¡. A magnet whose polar
axis is parallel to the cathode surface closest to the plasma halo is said to
be at 90¡. A fin cathode as shown in Figure 4 was found to produce the
lowest overall discharge impedance in the experiments described in
reference 2.

RRRReeeeffffeeeerrrreeeennnncccceeeessss

1) ÒA 2D Fluid Model of the DC Planar Magnetron Cathode,Ó UCRL-ID-
122494, 15 November 1995

2) ÒComparing a 2D Fluid Model of the DC Planar Magnetron Cathode to
Experiments,Ó UCRL-ID-125434, 15 May 1996

3) ÒElectric Vortex in MHD Flow,Ó UCRL-ID-121162,  1 May 1995

The above are available at:
http://www.llnl.gov/tid/lof/lof_home.html
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Cross section of a cathode with magnets @ 0¡

plasma halo

region of diffuse glow
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anode

magnetic field lines

plasma halo

cross section of cathode with magnet @ 90¡
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Magnetic field components x: transverse, y: perpendicular
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